
Currying

Jack Kelly
http://jackkelly.name/talks

January 21, 2020

http://jackkelly.name/talks


Back in 2006. . .

I I’d just started 2nd year uni thinking I knew what programming was. . .
I . . .and slammed straight into Haskell



One-arg function

I Here’s how you write a function:

f :: Int -> Int
f x = x * 2

I Okay, fair enough.



Two-arg function

I And here’s how you write a function of two arguments:

f :: Int -> Int -> Int
f x y = x + y

I Wait, what?



What’s up with the arrows?

I 2006!Jack: “This looks silly! Functions should have one argument and one arrow.”
I Today!Jack: “Joke’s on you, kiddo. Functions take only one argument. That’s

what the arrow means!”

In Haskell and Elm, functions are curried. It works like this:
I All functions take one argument.

I Functions with “multiple” arguments actually return other functions
I -> in a type associates to the right:

I a -> b -> c -> d means a -> (b -> (c -> d))
I Function application associates to the left:

I f x y z means ((f x) y) z



What’s up with the arrows?

I 2006!Jack: “This looks silly! Functions should have one argument and one arrow.”
I Today!Jack: “Joke’s on you, kiddo. Functions take only one argument. That’s

what the arrow means!”
In Haskell and Elm, functions are curried. It works like this:
I All functions take one argument.

I Functions with “multiple” arguments actually return other functions
I -> in a type associates to the right:

I a -> b -> c -> d means a -> (b -> (c -> d))
I Function application associates to the left:

I f x y z means ((f x) y) z



Tonight

I Add/remove redundant parens to get new perspectives
I Practice shifting between these perspectives
I Some implications of currying in library design
I Examples in Elm where possible, Haskell where necessary



List.map

-- Given a function and a list , apply that
-- function to each element of the list
List.map : (a -> b) -> List a -> List b



List.map

-- Given a function and a list , apply that
-- function to each element of the list
List.map : (a -> b) -> List a -> List b

List.map : (a -> b) -> (List a -> List b)



List.map

-- Given a function and a list , apply that
-- function to each element of the list
List.map : (a -> b) -> List a -> List b

-- Lift a function on elements to a function on
-- lists (Function transformer !)
List.map : (a -> b) -> (List a -> List b)



Dict.remove

-- Given a key and a Dict , return that Dict
-- minus the entry at key
Dict.remove

: comparable -> Dict comparable v
-> Dict comparable v



Dict.remove

-- Given a key and a Dict , return that Dict
-- minus the entry at key
Dict.remove

: comparable -> Dict comparable v
-> Dict comparable v

Dict.remove
: comparable
-> (Dict comparable v -> Dict comparable v)



Dict.remove

-- Given a key and a Dict , return that Dict
-- minus the entry at key
Dict.remove

: comparable -> Dict comparable v
-> Dict comparable v

-- Given a key , return a function
-- which subtracts it from a Dict
Dict.remove

: comparable
-> (Dict comparable v -> Dict comparable v)



Dict.insert

-- Given a key , value , and Dict , return the Dict
-- plus an entry associating the key and value.
Dict.insert

: comparable -> v -> Dict comparable v
-> Dict comparable v



Dict.insert

-- Given a key , value , and Dict , return the Dict
-- plus an entry associating the key and value.
Dict.insert

: comparable -> v -> Dict comparable v
-> Dict comparable v

Dict.insert
: comparable -> v
-> (Dict comparable v -> Dict comparable v)



Dict.insert

-- Given a key , value , and Dict , return the Dict
-- plus an entry associating the key and value.
Dict.insert

: comparable -> v -> Dict comparable v
-> Dict comparable v

-- Given a key and a value , return a function
-- which adds that association to a Dict
Dict.insert

: comparable -> v
-> (Dict comparable v -> Dict comparable v)



flip

-- Swap the first two arguments of a function.
-- (Why "first two"? c could be a function !)
flip : (a -> b -> c) -> (b -> a -> c)



flip

-- Swap the first two arguments of a function.
-- (Why "first two"? c could be a function !)
flip : (a -> b -> c) -> (b -> a -> c)

flip : (a -> b -> c) -> b -> (a -> c)



flip

-- Swap the first two arguments of a function.
-- (Why "first two"? c could be a function !)
flip : (a -> b -> c) -> (b -> a -> c)

-- Supply the second argument to a function
flip : (a -> b -> c) -> b -> (a -> c)



(«)

-- Haskell calls this (.)
(<<) : (b -> c) -> (a -> b) -> (a -> c)



(«)

-- Haskell calls this (.)
(<<) : (b -> c) -> (a -> b) -> (a -> c)

(<<) : (b -> c) -> (a -> b) -> a -> c



(«)

-- Haskell calls this (.)
(<<) : (b -> c) -> (a -> b) -> (a -> c)

-- Apply a function "under"
-- the first argument of another
(<<) : (b -> c) -> (a -> b) -> a -> c



(«) — What if c was a function?

I Remember that type variables can stand for anything, including other functions:
I Borrowed notation: (~) is the operator for “type equality” in Haskell

-- c ~ (d -> e)
(<<) : (b -> c) -> (a -> b) -> (a -> c)



(«) — What if c was a function?

I Remember that type variables can stand for anything, including other functions:
I Borrowed notation: (~) is the operator for “type equality” in Haskell

-- c ~ (d -> e)
(<<) : (b -> d -> e) -> (a -> b) -> (a -> d -> e)



(«) — What if c was a function?

I Remember that type variables can stand for anything, including other functions:
I Borrowed notation: (~) is the operator for “type equality” in Haskell

-- c ~ (d -> e)
(<<) : (b -> d -> e) -> (a -> b) -> (a -> d -> e)

(<<) : (b -> d -> e) -> (a -> b)
-> a -> d -> e



(«) — What if c was a function?

I Remember that type variables can stand for anything, including other functions:
I Borrowed notation: (~) is the operator for “type equality” in Haskell

-- c ~ (d -> e)
(<<) : (b -> d -> e) -> (a -> b) -> (a -> d -> e)

-- Stick a function "in front of"
-- the first argument
(<<) : (b -> d -> e) -> (a -> b)

-> a -> d -> e



liftA2

-- Combine the "f of a" and "f of b",
-- according to the given function
liftA2

:: Applicative f
=> (a -> b -> c) -> f a -> f b -> f c



liftA2

-- Combine the "f of a" and "f of b",
-- according to the given function
liftA2

:: Applicative f
=> (a -> b -> c) -> f a -> f b -> f c

liftA2
:: Applicative f
=> (a -> b -> c) -> (f a -> f b -> f c)



liftA2

-- Combine the "f of a" and "f of b",
-- according to the given function
liftA2

:: Applicative f
=> (a -> b -> c) -> f a -> f b -> f c

-- Lift a binary function "over f"
-- (Function transformer !)
liftA2

:: Applicative f
=> (a -> b -> c) -> (f a -> f b -> f c)



(<*>)

-- Apply the "f of a" to the "f of function"
(<*>)

:: Applicative f => f (a -> b) -> f a -> f b



(<*>)

-- Apply the "f of a" to the "f of function"
(<*>)

:: Applicative f => f (a -> b) -> f a -> f b

(<*>)
:: Applicative f => f (a -> b) -> (f a -> f b)



(<*>)

-- Apply the "f of a" to the "f of function"
(<*>)

:: Applicative f => f (a -> b) -> f a -> f b

-- Distribute f over ->
(<*>)

:: Applicative f => f (a -> b) -> (f a -> f b)



Lens — view

-- Given a lens and the structure being
-- zoomed into , return the thing the
-- lens "looks at"
view :: Lens ’ s a -> s -> a



Lens — view

-- Given a lens and the structure being
-- zoomed into , return the thing the
-- lens "looks at"
view :: Lens ’ s a -> s -> a

view
:: Lens ’ s a
-> (s -> a)



Lens — view

-- Given a lens and the structure being
-- zoomed into , return the thing the
-- lens "looks at"
view :: Lens ’ s a -> s -> a

-- Turn a lens into a getter function
view

:: Lens ’ s a
-> (s -> a)



Lens — set

-- Given a lens , a new valur for a part
-- and the structure being zoomed into ,
-- update the thing the lens "looks at"
set :: Lens ’ s a -> a -> s -> s



Lens — set

-- Given a lens , a new valur for a part
-- and the structure being zoomed into ,
-- update the thing the lens "looks at"
set :: Lens ’ s a -> a -> s -> s

set
:: Lens ’ s a
-> (a -> s -> s)



Lens — set

-- Given a lens , a new valur for a part
-- and the structure being zoomed into ,
-- update the thing the lens "looks at"
set :: Lens ’ s a -> a -> s -> s

-- Turn a lens into a setter function
set

:: Lens ’ s a
-> (a -> s -> s)



Lens — set

-- Given a lens , a new valur for a part
-- and the structure being zoomed into ,
-- update the thing the lens "looks at"
set :: Lens ’ s a -> a -> s -> s

-- Turn a lens into a setter function
set

:: Lens ’ s a
-> (a -> s -> s)

set
:: Lens ’ s a -> a
-> (s -> s)



Lens — set

-- Given a lens , a new valur for a part
-- and the structure being zoomed into ,
-- update the thing the lens "looks at"
set :: Lens ’ s a -> a -> s -> s

-- Turn a lens into a setter function
set

:: Lens ’ s a
-> (a -> s -> s)

-- Turn a lens and a new value
-- into an update function
set

:: Lens ’ s a -> a
-> (s -> s)



Lens — over

-- Given a lens and "update function"
-- on the part , update the whole
over :: Lens ’ s a -> (a -> a) -> s -> s



Lens — over

-- Given a lens and "update function"
-- on the part , update the whole
over :: Lens ’ s a -> (a -> a) -> s -> s

over
:: Lens ’ s a
-> (a -> a)
-> (s -> s)



Lens — over

-- Given a lens and "update function"
-- on the part , update the whole
over :: Lens ’ s a -> (a -> a) -> s -> s

-- Given a lens ,
-- lift a function on the part
-- into a function on the whole
over

:: Lens ’ s a
-> (a -> a)
-> (s -> s)



traverse

-- Map elements of a structure to actions ,
-- evaluate them left to right ,
-- and collect the results.
traverse

:: (Applicative f, Traversable t)
=> (a -> f b) -> t a -> f (t b)



traverse

-- Map elements of a structure to actions ,
-- evaluate them left to right ,
-- and collect the results.
traverse

:: (Applicative f, Traversable t)
=> (a -> f b) -> t a -> f (t b)

traverse
:: (Applicative f, Traversable t)
=> (a -> f b) -> (t a -> f (t b))



traverse

-- Map elements of a structure to actions ,
-- evaluate them left to right ,
-- and collect the results.
traverse

:: (Applicative f, Traversable t)
=> (a -> f b) -> t a -> f (t b)

-- Lift a function on items that returns an
-- action , to a function over traversable
-- structures (Function transformer !)
traverse

:: (Applicative f, Traversable t)
=> (a -> f b) -> (t a -> f (t b))



Using the “Function Transformer” perspective

-- Elm: doubleMap : (a -> b) -> List (List a) -> List (List b)
doubleMap :: (a -> b) -> [[a]] -> [[b]]
doubleMap f xss = _



What just happened?

(.)
:: (b -> c)
-> (a -> b)
-> (a -> c)



What just happened?

b ~ (x -> y):

(.)
:: (b -> c) -- map :: (x -> y) -> ([x] -> [y])
-> (a -> b)
-> (a -> c)



What just happened?

b ~ (x -> y); c ~ ([x] -> [y]):

(.)
:: ((x -> y) -> c) -- map :: (x -> y) -> ([x] -> [y])
-> (a -> (x -> y))
-> (a -> c)



What just happened?

b ~ (x -> y); c ~ ([x] -> [y]):

(.)
:: ((x -> y) -> ([x] -> [y])) -- map
-> (a -> (x -> y))
-> (a -> ([x] -> [y]))



What just happened?

a ~ (s -> t):

(map .)

:: (a -> (x -> y)) -- map :: (s -> t) -> ([s] -> [t])
-> (a -> ([x] -> [y]))



What just happened?

a ~ (s -> t); (x -> y) ~ ([s] -> [t]):

(map .)

:: ((s -> t) -> (x -> y)) -- map :: (s -> t) -> ([s] -> [t])
-> ((s -> t) -> ([x] -> [y]))



What just happened?

a ~ (s -> t); (x -> y) ~ ([s] -> [t]); x ~ [s]; t ~ [y]:

(map .)

:: ((s -> t) -> (x -> y)) -- map :: (s -> t) -> ([s] -> [t])
-> ((s -> t) -> ([x] -> [y]))



What just happened?

a ~ (s -> t); (x -> y) ~ ([s] -> [t]); x ~ [s]; y ~ [t]:

(map .)

:: ((s -> t) -> ([s] -> [t])) -- map
-> ((s -> t) -> ([[s]] -> [[t]]))



What just happened?

map . map

:: (s -> t) -> ([[s]] -> [[t]])



Where else does this work?

A lot of these “function transformers” compose nicely:
I fmap . fmap

:: (Functor f1, Functor f2)
=> (a -> b) -> f1 (f2 a) -> f1 (f2 b)

I liftA2 . liftA2
:: (Applicative f1, Applicative f2)
=> (a -> b -> c)
-> f1 (f2 a) -> f1 (f2 b) -> f1 (f2 c)

I foldMap . foldMap
:: (Foldable t1, Foldable t2, Monoid m)
=> (a -> m) -> t1 (t2 a) -> m

I traverse . traverse
:: (Traversable t1, Traversable t2, Applicative f)
-> (a -> f b) -> t1 (t2 a) -> f (t1 (t2 b))



Where else does this work?

A lot of these “function transformers” compose nicely:
I fmap . fmap

:: (Functor f1, Functor f2)
=> (a -> b) -> f1 (f2 a) -> f1 (f2 b)

I liftA2 . liftA2
:: (Applicative f1, Applicative f2)
=> (a -> b -> c)
-> f1 (f2 a) -> f1 (f2 b) -> f1 (f2 c)

I foldMap . foldMap
:: (Foldable t1, Foldable t2, Monoid m)
=> (a -> m) -> t1 (t2 a) -> m

I traverse . traverse
:: (Traversable t1, Traversable t2, Applicative f)
-> (a -> f b) -> t1 (t2 a) -> f (t1 (t2 b))



Where else does this work?

A lot of these “function transformers” compose nicely:
I fmap . fmap

:: (Functor f1, Functor f2)
=> (a -> b) -> f1 (f2 a) -> f1 (f2 b)

I liftA2 . liftA2
:: (Applicative f1, Applicative f2)
=> (a -> b -> c)
-> f1 (f2 a) -> f1 (f2 b) -> f1 (f2 c)

I foldMap . foldMap
:: (Foldable t1, Foldable t2, Monoid m)
=> (a -> m) -> t1 (t2 a) -> m

I traverse . traverse
:: (Traversable t1, Traversable t2, Applicative f)
-> (a -> f b) -> t1 (t2 a) -> f (t1 (t2 b))



Where else does this work?

A lot of these “function transformers” compose nicely:
I fmap . fmap

:: (Functor f1, Functor f2)
=> (a -> b) -> f1 (f2 a) -> f1 (f2 b)

I liftA2 . liftA2
:: (Applicative f1, Applicative f2)
=> (a -> b -> c)
-> f1 (f2 a) -> f1 (f2 b) -> f1 (f2 c)

I foldMap . foldMap
:: (Foldable t1, Foldable t2, Monoid m)
=> (a -> m) -> t1 (t2 a) -> m

I traverse . traverse
:: (Traversable t1, Traversable t2, Applicative f)
-> (a -> f b) -> t1 (t2 a) -> f (t1 (t2 b))



Why does this work so well?

I Partial application makes argument order really important
I Good API design =⇒ good argument order
I “The data structure is the final argument”

I Folklore in Haskell, explicit design rule in Elm
I https://package.elm-lang.org/help/design-guidelines#

the-data-structure-is-always-the-last-argument

https://package.elm-lang.org/help/design-guidelines#the-data-structure-is-always-the-last-argument
https://package.elm-lang.org/help/design-guidelines#the-data-structure-is-always-the-last-argument


Takeaways

When you get home:
I Paste your favourite functions into a text editor
I Add and remove “redundant” parens from the type signatures
I See familiar functions in a new light

Some suggestions:
I always : a -> b -> a (Haskell calls this const)
I curry :: ((a, b) -> c) -> a -> b -> c
I uncurry :: (a -> b -> c) -> (a, b) -> c

I Also check out traverse . uncurry



Takeaways

When you get home:
I Paste your favourite functions into a text editor
I Add and remove “redundant” parens from the type signatures
I See familiar functions in a new light

Some suggestions:
I always : a -> b -> a (Haskell calls this const)
I curry :: ((a, b) -> c) -> a -> b -> c
I uncurry :: (a -> b -> c) -> (a, b) -> c

I Also check out traverse . uncurry


