Everything Looks Like a Function

Jack Kelly

http://jackkelly.name/talks

February 21, 2023

http://jackkelly.name/talks

Tonight's Goals

@ Notice that data often directly represents functions
@ Practice shifting perspective between data <> functions

o Explore representable functors —
a specific way of converting between functions and data.

What do we do with data?

Match data type

@ Why do we have data at all?

@ What does this data
declaration represent?

data Match a = Anything | This a

match :: Eq a => Match a -> a -> Bool
match Anything _ = True
match (This a) a’ = a == a’

What do we do with data?

Match data type

@ Why do we have data at all?

@ What does this data
declaration represent?

data Match a = Anything | This a
match Eq a => Match a -> a -> Bool
match Anything _ = True

match (This a) a’ = a == a’

@ Type Match a represents a subset of functions a -> Bool

@ match ::

Eq a => Match a -> (a -> Bool) could be seen as an interpreter

for Match a — it turns the data structure into the predicate it represents.

Functions as Data

Region Handling

type Region = Point -> Bool
@ Why store the data? Why

circle :: Radius -> Region
not store the function itself? outside :: Region -> Region
@ The type Region is good (/\) :: Region -> Region -> Region
for exactly one thing
annulus :: Radius -> Radius -> Region

annulus rl r2 =
outside (circle r1l) /\ circle r2

@ From: Haskell vs. Ada vs. C++ vs. Awk vs. ...
An Experiment in Software Prototyping Productivity

@ See also: John Hughes revisiting “why functional programming matters”
Lambda Jam 2017: https://www.youtube.com/watch?v=vGVIYoKIzjU

https://www.youtube.com/watch?v=vGVJYoKIzjU

Syntax Trees

data Expr
= Lit Int
| Var Text
| Add Expr Expr

-- (x + 2) +y

sample :: Expr
sample =
Add
(Add (vVar "x") (Lit 2))
(Var "y")

Operations

eval :: Map Text Int ->
Expr -> Maybe Int

prettyPrint :: Expr -> Text

variables :: Expr -> Set Text

o We want to do more than just
evaluate syntax trees!

@ Parsing straight to functions subverts
that goal

Functions vs. Data

o Composable @ Serialisable

@ Opaque @ Inspectable

o Flexible o Rigid

@ Supports one operation: apply @ Supports many operations

@ Looks like the expression problem!
@ See also: “initial” vs. “final” encodings of data
e https://peddie.github.io/encodings/encodings-text.html

https://peddie.github.io/encodings/encodings-text.html

Example: Amazonka Path Prefixes

o AWS API Gateway is a “serverless” product from AWS, which routes requests from
one endpoint to different backend services.

@ To manage WebSocket connections on an AWS API Gateway, you need to make
AWS API calls to its deployed domain name and path prefix.

@ Amazonka can override services to support custom domain names, but not path
prefixes. | was asked to add support for this.

@ The only thing we ever do with a pathPrefix is prepend it to the request path.
Should we instead store pathHook :: Path -> Path, for more flexibility?

Example: Functions and Maps

@ The primary operation on a Map k v is
lookup :: Ord k => Map k v -> (k -> Maybe v)

@ We could say that representing this function k -> Maybe v is the whole reason
we have a Map k v

@ But Map k v is much more easily serialisable and incrementally editable

@ If you have a function £ :: x -> y and x is finitely enumerable, you can serialise
the functions by writing every (x, £ x) pair into a map or association list.

o Interestingly, functions are contravariant in x but the map is covariant in x.

Converting Between Functions and Data

Representable Functors

‘adjunctions ¢, simplified
=> Representable f where

-- From package
class Functor f

type Rep £ :: Type
index :: f a -> (Rep f -> a)
tabulate :: (Rep £ -> a) -> f a
v

@ Isomorphism between f and (->) (Rep f)

@ Methods convert f a <> Rep f -> a
@ f can implement instances from the reader functor for free

Representable Functors — Example (1)

@ How can we fetch every parameter
we care about on startup?

@ How do we know we have them all?

Parameter Service

fetchParameters
[Text] -> I0 (Map Text Text)

Representable Functors — Example (1)

@ How can we fetch every parameter
we care about on startup?

@ How do we know we have them all?

Parameter Service

fetchParameters
[Text] -> I0 (Map Text Text)

Parameter Names

data Parameter =
Foo | Bar | Baz

Parameter Records

data Parameters a =

{ foo :: a
, bar :: a
, baz :: a
+

deriving (Functor,

Parameters

Foldable, Traversable)

names :: Parameters
names =
Parameters "a" "b"

Text

nen

Representable Functors — Example (2)

instance Representable Parameters where

Representable instance

type Rep Parameters = Parameter
index Parameters a -> Parameter -> a
index Parameters{..} p = case p of

Foo -> foo

Bar -> bar

Baz -> baz
tabulate :: (Parameter -> a) -> Parameters a
tabulate f = Parameters

{ foo = f Foo, bar = f Bar, baz = f

Baz }

Representable Functors — Example (3)

Fetching all Parameters

fetchParametersByName

Parameters Text -> I0 (Maybe (Parameters Text))
fetchParametersByName names = do

values <- fetchParameters (tolList names)

let structure :: Params (Maybe Text)
structure = tabulate $ \p ->
Map.lookup (index names p) values

-- sequence :: Parameters (Maybe a) -> Maybe (Parameters a)
pure (sequence structure)

Rank-2 Representables

Higher-Kinded Data

data Parameters f = Parameters
{ foo :: f Int
, bar :: f Text
, baz :: f Bool
}
.

@ Representable functors generalise to heterogeneous data
@ Could fetch all parameters and parse them to correct types
fetchParametersByName

Parameters (Const Text)
I0 (Maybe (Parameter Identity))

>

What's Next

o What have we learned?

o It's worth thinking about the functions your data could represent
e It's worth thinking about the data your functions could represent
o Representable functors seem doable in many languages

@ Where else can we go?

o Functions aren't as opaque as you might think (Compiling to Categories)

o Functions can be a good model of how things should behave (Denotational Design)

o If you can convert from a function = data = function, you can send entire
functions to other languages/machines/. .. in a disciplined way

