
Everything Looks Like a Function

Jack Kelly
http://jackkelly.name/talks

February 21, 2023

http://jackkelly.name/talks

Tonight’s Goals

Notice that data often directly represents functions
Practice shifting perspective between data ↔ functions
Explore representable functors —
a specific way of converting between functions and data.

What do we do with data?

Why do we have data at all?
What does this data
declaration represent?

Match data type

data Match a = Anything | This a

match :: Eq a => Match a -> a -> Bool
match Anything _ = True
match (This a) a’ = a == a’

Type Match a represents a subset of functions a -> Bool

match :: Eq a => Match a -> (a -> Bool) could be seen as an interpreter
for Match a — it turns the data structure into the predicate it represents.

What do we do with data?

Why do we have data at all?
What does this data
declaration represent?

Match data type

data Match a = Anything | This a

match :: Eq a => Match a -> a -> Bool
match Anything _ = True
match (This a) a’ = a == a’

Type Match a represents a subset of functions a -> Bool

match :: Eq a => Match a -> (a -> Bool) could be seen as an interpreter
for Match a — it turns the data structure into the predicate it represents.

Functions as Data

Why store the data? Why
not store the function itself?
The type Region is good
for exactly one thing

Region Handling

type Region = Point -> Bool

circle :: Radius -> Region
outside :: Region -> Region
(/\) :: Region -> Region -> Region

annulus :: Radius -> Radius -> Region
annulus r1 r2 =

outside (circle r1) /\ circle r2

From: Haskell vs. Ada vs. C++ vs. Awk vs. . . .
An Experiment in Software Prototyping Productivity
See also: John Hughes revisiting “why functional programming matters”
Lambda Jam 2017: https://www.youtube.com/watch?v=vGVJYoKIzjU

https://www.youtube.com/watch?v=vGVJYoKIzjU

Syntax Trees

Language

data Expr
= Lit Int
| Var Text
| Add Expr Expr

-- (x + 2) + y
sample :: Expr
sample =

Add
(Add (Var "x") (Lit 2))
(Var "y")

Operations

eval :: Map Text Int ->
Expr -> Maybe Int

prettyPrint :: Expr -> Text

variables :: Expr -> Set Text

We want to do more than just
evaluate syntax trees!
Parsing straight to functions subverts
that goal

Functions vs. Data

Functions
Composable
Opaque
Flexible
Supports one operation: apply

Data
Serialisable
Inspectable
Rigid
Supports many operations

Looks like the expression problem!
See also: “initial” vs. “final” encodings of data

https://peddie.github.io/encodings/encodings-text.html

https://peddie.github.io/encodings/encodings-text.html

Example: Amazonka Path Prefixes

AWS API Gateway is a “serverless” product from AWS, which routes requests from
one endpoint to different backend services.
To manage WebSocket connections on an AWS API Gateway, you need to make
AWS API calls to its deployed domain name and path prefix.
Amazonka can override services to support custom domain names, but not path
prefixes. I was asked to add support for this.
The only thing we ever do with a pathPrefix is prepend it to the request path.
Should we instead store pathHook :: Path -> Path, for more flexibility?

Example: Functions and Maps

The primary operation on a Map k v is
lookup :: Ord k => Map k v -> (k -> Maybe v)

We could say that representing this function k -> Maybe v is the whole reason
we have a Map k v

But Map k v is much more easily serialisable and incrementally editable
If you have a function f :: x -> y and x is finitely enumerable, you can serialise
the functions by writing every (x, f x) pair into a map or association list.
Interestingly, functions are contravariant in x but the map is covariant in x.

Converting Between Functions and Data

Representable Functors

-- From package ‘adjunctions ‘, simplified
class Functor f => Representable f where

type Rep f :: Type
index :: f a -> (Rep f -> a)
tabulate :: (Rep f -> a) -> f a

Isomorphism between f and (->) (Rep f)

Methods convert f a ⇔ Rep f -> a

f can implement instances from the reader functor for free

Representable Functors — Example (1)

How can we fetch every parameter
we care about on startup?
How do we know we have them all?

Parameter Service

fetchParameters ::
[Text] -> IO (Map Text Text)

Parameter Names

data Parameter =
Foo | Bar | Baz

Parameter Records

data Parameters a = Parameters
{ foo :: a
, bar :: a
, baz :: a
}
deriving (Functor ,

Foldable , Traversable)

names :: Parameters Text
names =

Parameters "a" "b" "c"

Representable Functors — Example (1)

How can we fetch every parameter
we care about on startup?
How do we know we have them all?

Parameter Service

fetchParameters ::
[Text] -> IO (Map Text Text)

Parameter Names

data Parameter =
Foo | Bar | Baz

Parameter Records

data Parameters a = Parameters
{ foo :: a
, bar :: a
, baz :: a
}
deriving (Functor ,

Foldable , Traversable)

names :: Parameters Text
names =

Parameters "a" "b" "c"

Representable Functors — Example (2)

Representable instance

instance Representable Parameters where
type Rep Parameters = Parameter

index :: Parameters a -> Parameter -> a
index Parameters {..} p = case p of

Foo -> foo
Bar -> bar
Baz -> baz

tabulate :: (Parameter -> a) -> Parameters a
tabulate f = Parameters

{ foo = f Foo , bar = f Bar , baz = f Baz }

Representable Functors — Example (3)

Fetching all Parameters

fetchParametersByName ::
Parameters Text -> IO (Maybe (Parameters Text))

fetchParametersByName names = do
values <- fetchParameters (toList names)

let structure :: Params (Maybe Text)
structure = tabulate $ \p ->

Map.lookup (index names p) values

-- sequence :: Parameters (Maybe a) -> Maybe (Parameters a)
pure (sequence structure)

Rank-2 Representables

Higher-Kinded Data

data Parameters f = Parameters
{ foo :: f Int
, bar :: f Text
, baz :: f Bool
}

Representable functors generalise to heterogeneous data
Could fetch all parameters and parse them to correct types

fetchParametersByName ::
Parameters (Const Text) ->
IO (Maybe (Parameter Identity))

What’s Next

What have we learned?
It’s worth thinking about the functions your data could represent
It’s worth thinking about the data your functions could represent
Representable functors seem doable in many languages

Where else can we go?
Functions aren’t as opaque as you might think (Compiling to Categories)
Functions can be a good model of how things should behave (Denotational Design)
If you can convert from a function ⇒ data ⇒ function, you can send entire
functions to other languages/machines/. . . in a disciplined way

