
Reflex Outside the Browser

Jack Kelly
http://jackkelly.name/talks

Queensland Functional Programming Lab

CSIRO’s Data61

September 2, 2019

http://jackkelly.name/talks

Thought Experiment: Implement a Card Game

What is Reflex?

I Functional Reactive Programming (FRP) is a solid theory for talking about
time-varying values and instantaneous phenomena

I Reflex is an implementation of this theory∗

I Primitives:
I Behavior a: a time-varying a
I Event a: instantaneous occurrences of a
I Dynamic a: like Behavior a, but also signals its updates

What is Reflex?

I Functional Reactive Programming (FRP) is a solid theory for talking about
time-varying values and instantaneous phenomena

I Reflex is an implementation of this theory∗

I Primitives:
I Behavior a: a time-varying a
I Event a: instantaneous occurrences of a
I Dynamic a: like Behavior a, but also signals its updates

Value

Time

What is Reflex?

I Functional Reactive Programming (FRP) is a solid theory for talking about
time-varying values and instantaneous phenomena

I Reflex is an implementation of this theory∗

I Primitives:
I Behavior a: a time-varying a
I Event a: instantaneous occurrences of a
I Dynamic a: like Behavior a, but also signals its updates

Value

Time

What is Reflex?

I Functional Reactive Programming (FRP) is a solid theory for talking about
time-varying values and instantaneous phenomena

I Reflex is an implementation of this theory∗

I Primitives:
I Behavior a: a time-varying a
I Event a: instantaneous occurrences of a
I Dynamic a: like Behavior a, but also signals its updates

Value

Time

Typeclasses

I What does a typeclass define?

I What does a typeclass mean?

I Behavior has Functor, Applicative, and Monad instances

I Dynamic has Functor, Applicative, and Monad instances

I Event has a Functor instance but isn’t even Applicative!
I but it is Filterable (from witherable)
I and Semialign (from these/semialign)

Typeclasses

I What does a typeclass define?

I What does a typeclass mean?

I Behavior has Functor, Applicative, and Monad instances

I Dynamic has Functor, Applicative, and Monad instances

I Event has a Functor instance but isn’t even Applicative!

I but it is Filterable (from witherable)
I and Semialign (from these/semialign)

Typeclasses

I What does a typeclass define?

I What does a typeclass mean?

I Behavior has Functor, Applicative, and Monad instances

I Dynamic has Functor, Applicative, and Monad instances

I Event has a Functor instance but isn’t even Applicative!
I but it is Filterable (from witherable)
I and Semialign (from these/semialign)

class Functor f => Filterable f where

mapMaybe :: (a -> Maybe b) -> f a -> f b

catMaybes :: f (Maybe a) -> f a

filter :: (a -> Bool) -> f a -> f a

Typeclasses

I What does a typeclass define?

I What does a typeclass mean?

I Behavior has Functor, Applicative, and Monad instances

I Dynamic has Functor, Applicative, and Monad instances

I Event has a Functor instance but isn’t even Applicative!
I but it is Filterable (from witherable)
I and Semialign (from these/semialign)

data These a b = This a | That b | These a b

class Functor f => Semialign f where

align :: f a -> f b -> f (These a b)

Laws!

I For Filterable:
mapMaybe (Just . f) = fmap f

mapMaybe f . mapMaybe g = mapMaybe (f <=< g)

I For Semialign:
-- (N.B.: join f = f x x):

join align = fmap (join These)

align (f <$> x) (g <$> y) = bimap f g <$> align x y

alignWith f a b = f <$> align a b align x (align y z)

= fmap assoc (align (align x y) z)

I For Foldable Semialigns:
toList x

= toListOf (folded . here) (align x y)

= mapMaybe justHere (toList (align x y))

Challenges of Reflex

I Feels like a big jump:
I Spectacular type signatures
I Pigeonholed as frontend tech (GHCjs)
I Reflex-platform (nix)

I For today:
I Simplified type signatures:

I Reflex: Event t a
I These slides: Event a

I Native binaries
I Recent versions of Reflex are on Hackage

Challenges of Reflex

I Feels like a big jump:
I Spectacular type signatures
I Pigeonholed as frontend tech (GHCjs)
I Reflex-platform (nix)

I For today:
I Simplified type signatures:

I Reflex: Event t a
I These slides: Event a

I Native binaries
I Recent versions of Reflex are on Hackage

Hosts and Guests

Reflex

Host

Guest

I Guests ask for features, classy MTL-style:
I (PostBuild m, TriggerEvent m) => ... -> m ()

I This lets us switch out the FRP runtime

I Extend the runtime with PostBuildT, TriggerEventT, PerformEventT, . . .

Example Host: String I/O

Reflex

stdioHost

Your Code
Here

stdin stdout

quit

stdioHost

:: (Event String -> m (Event String , Event ()))

-> IO ()

Example Host: String I/O

Reflex

stdioHost

Your Code
Here

stdin stdout

quit

stdioHost

:: (Event String -> m (Event String , Event ()))

-- ~~~~~~~~~~~~ stdin

-> IO ()

Example Host: String I/O

Reflex

stdioHost

Your Code
Here

stdin stdout

quit

stdioHost

:: (Event String -> m (Event String, Event ()))

-- ~~~~~~~~~~~~ stdout

-> IO ()

Example Host: String I/O

Reflex

stdioHost

Your Code
Here

stdin stdout

quit

stdioHost

:: (Event String -> m (Event String , Event ()))

-- ~~~~~~~~ quit

-> IO ()

Basic Host

Reflex

basicHostWithQuit

Your Code
Here quit

basicHostWithQuit :: m (Event ()) -> IO ()

I Provided by reflex-basic-host

I Run until the returned event fires

I You connect your guest to the outside world

Basic Host

Reflex

basicHostWithQuit

Your Code
Here quit

basicHostWithQuit :: m (Event ()) -> IO ()

-- ~~~~~~~~ quit

I Provided by reflex-basic-host

I Run until the returned event fires

I You connect your guest to the outside world

class PostBuild (Reflex.PostBuild.Class)

class PostBuild m where

getPostBuild :: m (Event ())

I Morally: “Here’s an event that fires when the network is built”

class TriggerEvent (Reflex.TriggerEvent.Class)

class TriggerEvent m where

-- And a couple of others

newTriggerEvent :: m (Event a, a -> IO ())

I Morally: “m can create new events”

I Usually pass the trigger to another thread

class TriggerEvent (Reflex.TriggerEvent.Class)

class TriggerEvent m where

-- And a couple of others

newTriggerEvent :: m (Event a, a -> IO ())

-- ~~~~~~~ The event

I Morally: “m can create new events”

I Usually pass the trigger to another thread

class TriggerEvent (Reflex.TriggerEvent.Class)

class TriggerEvent m where

-- And a couple of others

newTriggerEvent :: m (Event a, a -> IO ())

-- ~~~~~~~~~~ Its trigger

I Morally: “m can create new events”

I Usually pass the trigger to another thread

class PerformEvent (Reflex.PerformEvent.Class)

class PerformEvent m where

type Performable m :: Type -> Type

-- And a couple of others

performEvent

:: Event (Performable m a)

-> m (Event a)

I Morally: “Perform each action as it happens, and fire off the results”

I Performable m is often MonadIO

class PerformEvent (Reflex.PerformEvent.Class)

class PerformEvent m where

type Performable m :: Type -> Type

--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Associated type

-- And a couple of others

performEvent

:: Event (Performable m a)

-> m (Event a)

I Morally: “Perform each action as it happens, and fire off the results”

I Performable m is often MonadIO

class PerformEvent (Reflex.PerformEvent.Class)

class PerformEvent m where

type Performable m :: Type -> Type

-- And a couple of others

performEvent

:: Event (Performable m a)

-- ~~~~~~~~~~~~~~~ Actions to perform

-> m (Event a)

I Morally: “Perform each action as it happens, and fire off the results”

I Performable m is often MonadIO

class PerformEvent (Reflex.PerformEvent.Class)

class PerformEvent m where

type Performable m :: Type -> Type

-- And a couple of others

performEvent

:: Event (Performable m a)

-> m (Event a)

-- ~~~~~~~ Results of actions

I Morally: “Perform each action as it happens, and fire off the results”

I Performable m is often MonadIO

Recreating stdio: Standard Output

performEvent_

:: PerformEvent m

=> Event (Performable m ())

-> m ()

stdout :: PerformEvent m => Event String -> m ()

stdout eStrings = performEvent_

(liftIO . putStrLn <$> eStrings)

Recreating stdio: Standard Output

performEvent_

:: PerformEvent m

=> Event (Performable m ())

-> m ()

stdout :: PerformEvent m => Event String -> m ()

stdout eStrings = performEvent_

(liftIO . putStrLn <$> eStrings)

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Event -of -actions

Recreating stdio: Standard Output

performEvent_

:: PerformEvent m

=> Event (Performable m ())

-> m ()

stdout :: PerformEvent m => Event String -> m ()

stdout eStrings = performEvent_

(liftIO . putStrLn <$> eStrings)

-- ~~~~~~~~ Event String

Recreating stdio: Standard Output

performEvent_

:: PerformEvent m

=> Event (Performable m ())

-> m ()

stdout :: PerformEvent m => Event String -> m ()

stdout eStrings = performEvent_

(liftIO . putStrLn <$> eStrings)

-- ~~~~~~~~~~~~~~~~~ MonadIO io => String -> io ()

Recreating stdio: Standard Input

I After the network is built, create an event, and. . .

I . . .kick off a thread, which. . .

I . . .loops forever, feeding lines into the trigger

Recreating stdio: Standard Input

I After the network is built, create an event, and. . .

I . . .kick off a thread, which. . .

I . . .loops forever, feeding lines into the trigger

performEventAsync

:: (TriggerEvent m, PerformEvent m)

=> Event ((a -> IO ()) -> Performable m ())

-> m (Event a)

Recreating stdio: Standard Input

I After the network is built, create an event, and. . .

I . . .kick off a thread, which. . .

I . . .loops forever, feeding lines into the trigger

performEventAsync

:: (TriggerEvent m, PerformEvent m)

=> Event ((a -> IO ()) -> Performable m ())

-- ~~~~~~~~~~ Trigger

-> m (Event a)

Recreating stdio: Standard Input

I After the network is built, create an event, and. . .

I . . .kick off a thread, which. . .

I . . .loops forever, feeding lines into the trigger

performEventAsync

:: (TriggerEvent m, PerformEvent m)

=> Event ((a -> IO ()) -> Performable m ())

-- ~~~~~~~~~~~~~~~~ Action

-> m (Event a)

Recreating stdio: Standard Input

I After the network is built, create an event, and. . .

I . . .kick off a thread, which. . .

I . . .loops forever, feeding lines into the trigger

performEventAsync

:: (TriggerEvent m, PerformEvent m)

=> Event ((a -> IO ()) -> Performable m ())

-> m (Event a)

stdin :: (...) => m (Event String)

stdin = do

ePostBuild <- getPostBuild

let loop fire = void $ liftIO $ forkIO

(forever $ getLine >>= fire)

performEventAsync (loop <$ ePostBuild)

Recreating stdio: Standard Input

I After the network is built, create an event, and. . .

I . . .kick off a thread, which. . .

I . . .loops forever, feeding lines into the trigger

performEventAsync

:: (TriggerEvent m, PerformEvent m)

=> Event ((a -> IO ()) -> Performable m ())

-> m (Event a)

stdin :: (...) => m (Event String)

stdin = do

ePostBuild <- getPostBuild

let loop fire = void $ liftIO $ forkIO

(forever $ getLine >>= fire)

performEventAsync (loop <$ ePostBuild)

--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Perform on PostBuild

Recreating stdio: Standard Input

I After the network is built, create an event, and. . .

I . . .kick off a thread, which. . .

I . . .loops forever, feeding lines into the trigger

performEventAsync

:: (TriggerEvent m, PerformEvent m)

=> Event ((a -> IO ()) -> Performable m ())

-> m (Event a)

stdin :: (...) => m (Event String)

stdin = do

ePostBuild <- getPostBuild

let loop fire = void $ liftIO $ forkIO

(forever $ getLine >>= fire)

performEventAsync (loop <$ ePostBuild)

-- ~~~~~~~ Perform the loop function

Recreating stdio: Standard Input

I After the network is built, create an event, and. . .

I . . .kick off a thread, which. . .

I . . .loops forever, feeding lines into the trigger

performEventAsync

:: (TriggerEvent m, PerformEvent m)

=> Event ((a -> IO ()) -> Performable m ())

-> m (Event a)

stdin :: (...) => m (Event String)

stdin = do

ePostBuild <- getPostBuild

let loop fire = void $ liftIO $ forkIO

-- ~~~~~~ Fork worker thread

(forever $ getLine >>= fire)

performEventAsync (loop <$ ePostBuild)

Recreating stdio: Standard Input

I After the network is built, create an event, and. . .

I . . .kick off a thread, which. . .

I . . .loops forever, feeding lines into the trigger

performEventAsync

:: (TriggerEvent m, PerformEvent m)

=> Event ((a -> IO ()) -> Performable m ())

-> m (Event a)

stdin :: (...) => m (Event String)

stdin = do

ePostBuild <- getPostBuild

let loop fire = void $ liftIO $ forkIO

(forever $ getLine >>= fire)

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~ Loop forever

performEventAsync (loop <$ ePostBuild)

Recreating stdio: Standard Input

I After the network is built, create an event, and. . .

I . . .kick off a thread, which. . .

I . . .loops forever, feeding lines into the trigger

performEventAsync

:: (TriggerEvent m, PerformEvent m)

=> Event ((a -> IO ()) -> Performable m ())

-> m (Event a)

stdin :: (...) => m (Event String)

stdin = do

ePostBuild <- getPostBuild

let loop fire = void $ liftIO $ forkIO

(forever $ getLine >>= fire)

-- ~~~~ Trigger: String -> IO ()

performEventAsync (loop <$ ePostBuild)

Recompiling OpenGL Shaders: fsnotify

I Callback-oriented libraries work well with TriggerEvent

I fsnotify watches a directory for file changes and calls your callback when that
happens

I We want an Event (FSNotify.Event)

watchDir

:: WatchManager

-> FilePath

-> ActionPredicate

-> Action

-> IO StopListening

Recompiling OpenGL Shaders: fsnotify

I Callback-oriented libraries work well with TriggerEvent

I fsnotify watches a directory for file changes and calls your callback when that
happens

I We want an Event (FSNotify.Event)

watchDir

:: WatchManager

-> FilePath

-> (FSNotify.Event -> Bool)

-> (FSNotify.Event -> IO ())

-> IO (IO ())

Recompiling OpenGL Shaders: fsnotify

I Callback-oriented libraries work well with TriggerEvent

I fsnotify watches a directory for file changes and calls your callback when that
happens

I We want an Event (FSNotify.Event)

watchDir

:: WatchManager

-> FilePath

-> (FSNotify.Event -> Bool) -- ActionPredicate

-> (FSNotify.Event -> IO ())

-> IO (IO ())

Recompiling OpenGL Shaders: fsnotify

I Callback-oriented libraries work well with TriggerEvent

I fsnotify watches a directory for file changes and calls your callback when that
happens

I We want an Event (FSNotify.Event)

watchDir

:: WatchManager

-> FilePath

-> (FSNotify.Event -> Bool) -- ActionPredicate

-> (FSNotify.Event -> IO ()) -- Action

-> IO (IO ())

Recompiling OpenGL Shaders: fsnotify

I Callback-oriented libraries work well with TriggerEvent

I fsnotify watches a directory for file changes and calls your callback when that
happens

I We want an Event (FSNotify.Event)

watchDir

:: WatchManager

-> FilePath

-> (FSNotify.Event -> Bool) -- ActionPredicate

-> (FSNotify.Event -> IO ()) -- Action

-> IO (IO ()) -- IO StopListening

Recompiling OpenGL Shaders: fsnotify

watchDir

:: WatchManager

-> FilePath

-> (FSNotify.Event -> Bool) -- ActionPredicate

-> (FSNotify.Event -> IO ()) -- Action

-> IO (IO ()) -- IO StopListening

Recompiling OpenGL Shaders: fsnotify

watchDir

:: WatchManager

-> FilePath

-> (FSNotify.Event -> Bool) -- ActionPredicate

-> (FSNotify.Event -> IO ()) -- Action

-> IO (IO ()) -- IO StopListening

newEventWithLazyTriggerWithOnComplete

:: TriggerEvent m

=> ((a -> IO () -> IO ()) -> IO (IO ()))

-> m (Event a)

Recompiling OpenGL Shaders: fsnotify

watchDir

:: WatchManager

-> FilePath

-> (FSNotify.Event -> Bool) -- ActionPredicate

-> (FSNotify.Event -> IO ()) -- Action

-> IO (IO ()) -- IO StopListening

newEventWithLazyTriggerWithOnComplete

:: TriggerEvent m

=> ((a -> IO () -> IO ()) -> IO (IO ()))

-> m (Event a)

Recompiling OpenGL Shaders: fsnotify

watchDir

:: WatchManager

-> FilePath

-> (FSNotify.Event -> Bool) -- ActionPredicate

-> (FSNotify.Event -> IO ()) -- Action

-> IO (IO ()) -- IO StopListening

newEventWithLazyTriggerWithOnComplete

:: TriggerEvent m

=> ((a -> IO () -> IO ()) -> IO (IO ()))

-- ~~~~~~~~~~~~~~~~~~~ Trigger

-> m (Event a)

Recompiling OpenGL Shaders: fsnotify

watchDir

:: WatchManager

-> FilePath

-> (FSNotify.Event -> Bool) -- ActionPredicate

-> (FSNotify.Event -> IO ()) -- Action

-> IO (IO ()) -- IO StopListening

newEventWithLazyTriggerWithOnComplete

:: TriggerEvent m

=> ((a -> IO () -> IO ()) -> IO (IO ()))

-- ~~~~~ On -complete callback

-> m (Event a)

Recompiling OpenGL Shaders: fsnotify

watchDir

:: WatchManager

-> FilePath

-> (FSNotify.Event -> Bool) -- ActionPredicate

-> (FSNotify.Event -> IO ()) -- Action

-> IO (IO ()) -- IO StopListening

newEventWithLazyTriggerWithOnComplete

:: TriggerEvent m

=> ((a -> IO () -> IO ()) -> IO (IO ()))

-- ~~~~~ Teardown action

-> m (Event a)

Recompiling OpenGL Shaders: fsnotify

watchDir

:: TriggerEvent m

=> WatchManager

-> FilePath

-> m (Event FSNotify.Event)

watchDir manager dir

= newEventWithLazyTriggerWithOnComplete $

\fire -> FSNotify.watchDir

manager

dir

(_ -> True)

(\ fsEvent -> fire fsEvent (pure ()))

Recompiling OpenGL Shaders: fsnotify

watchDir

:: TriggerEvent m

=> WatchManager

-> FilePath

-> m (Event FSNotify.Event)

watchDir manager dir

= newEventWithLazyTriggerWithOnComplete $

\fire -> FSNotify.watchDir

manager -- Passed through

dir

(_ -> True)

(\ fsEvent -> fire fsEvent (pure ()))

Recompiling OpenGL Shaders: fsnotify

watchDir

:: TriggerEvent m

=> WatchManager

-> FilePath

-> m (Event FSNotify.Event)

watchDir manager dir

= newEventWithLazyTriggerWithOnComplete $

\fire -> FSNotify.watchDir

manager

dir -- Passed through

(_ -> True)

(\ fsEvent -> fire fsEvent (pure ()))

Recompiling OpenGL Shaders: fsnotify

watchDir

:: TriggerEvent m

=> WatchManager

-> FilePath

-> m (Event FSNotify.Event)

watchDir manager dir

= newEventWithLazyTriggerWithOnComplete $

\fire -> FSNotify.watchDir

manager

dir

(_ -> True) -- ActionPredicate

(\ fsEvent -> fire fsEvent (pure ()))

Recompiling OpenGL Shaders: fsnotify

watchDir

:: TriggerEvent m

=> WatchManager

-> FilePath

-> m (Event FSNotify.Event)

watchDir manager dir

= newEventWithLazyTriggerWithOnComplete $

\fire -> FSNotify.watchDir

manager

dir

(_ -> True)

(\fsEvent -> fire fsEvent (pure ()))

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Action

Recompiling OpenGL Shaders: fsnotify

watchDir

:: TriggerEvent m

=> WatchManager

-> FilePath

-> m (Event FSNotify.Event)

watchDir manager dir

= newEventWithLazyTriggerWithOnComplete $

\fire -> FSNotify.watchDir

manager

dir

(_ -> True)

(\ fsEvent -> fire fsEvent (pure ()))

-- ~~~~ Reflex trigger:

-- FSNotify.Event -> IO () -> IO ()

Recompiling OpenGL Shaders: fsnotify

watchDir

:: TriggerEvent m

=> WatchManager

-> FilePath

-> m (Event FSNotify.Event)

watchDir manager dir

= newEventWithLazyTriggerWithOnComplete $

\fire -> FSNotify.watchDir

manager

dir

(_ -> True)

(\ fsEvent -> fire fsEvent (pure ()))

-- On complete: do nothing ~~~~~~~

Recompiling OpenGL Shaders: Shader Wiring Diagram

Program

FSNotify.Event

I See watchShaderProgram in Shader.hs

Recompiling OpenGL Shaders: Shader Wiring Diagram
mapMaybe

(FilePath, UTCTime, Bool)

Program

FSNotify.Event

I See watchShaderProgram in Shader.hs

Recompiling OpenGL Shaders: Shader Wiring Diagram
mapMaybe

(FilePath, UTCTime, Bool)
fmap

FilePath

Program

FSNotify.Event

I See watchShaderProgram in Shader.hs

Recompiling OpenGL Shaders: Shader Wiring Diagram
mapMaybe

(FilePath, UTCTime, Bool)
fmap

FilePath

filter (== ”frag.glsl”)

FilePath

Program

FSNotify.Event

I See watchShaderProgram in Shader.hs

Recompiling OpenGL Shaders: Shader Wiring Diagram
mapMaybe

(FilePath, UTCTime, Bool)
fmap

FilePath

filter (== ”frag.glsl”)

FilePath

performEvent

ByteString

Program

FSNotify.Event

I See watchShaderProgram in Shader.hs

Recompiling OpenGL Shaders: Shader Wiring Diagram
mapMaybe

(FilePath, UTCTime, Bool)
fmap

FilePath

filter (== ”frag.glsl”)

FilePath

performEvent

ByteString

compile

Either ByteString Shader

Program

FSNotify.Event

I See watchShaderProgram in Shader.hs

Recompiling OpenGL Shaders: Shader Wiring Diagram
mapMaybe

(FilePath, UTCTime, Bool)
fmap

FilePath

filter (== ”frag.glsl”)

FilePath

performEvent

ByteString

compile

Either ByteString Shader

fanEither

ByteString Shader

Program

FSNotify.Event

I See watchShaderProgram in Shader.hs

Recompiling OpenGL Shaders: Shader Wiring Diagram
mapMaybe

(FilePath, UTCTime, Bool)
fmap

FilePath

filter (== ”frag.glsl”)

FilePath

performEvent

ByteString

compile

Either ByteString Shader

fanEither

ByteString Shader

Program

FSNotify.Event

I See watchShaderProgram in Shader.hs

Recompiling OpenGL Shaders: Shader Wiring Diagram
mapMaybe

(FilePath, UTCTime, Bool)
fmap

FilePath

filter (== ”frag.glsl”)

FilePath

performEvent

ByteString

compile

Either ByteString Shader

fanEither

ByteString Shader

fanEither

ShaderByteString

performEvent

compile

Either ByteString Shader

ByteString

FilePath

filter (== ”vert.glsl”)

Program

FSNotify.Event

I See watchShaderProgram in Shader.hs

Recompiling OpenGL Shaders: Shader Wiring Diagram
mapMaybe

(FilePath, UTCTime, Bool)
fmap

FilePath

filter (== ”frag.glsl”)

FilePath

performEvent

ByteString

compile

Either ByteString Shader

fanEither

ByteString Shader

fanEither

ShaderByteString

performEvent

compile

Either ByteString Shader

ByteString

FilePath

filter (== ”vert.glsl”)

link

Either ByteString Program

Program

FSNotify.Event

I See watchShaderProgram in Shader.hs

Recompiling OpenGL Shaders: Shader Wiring Diagram
mapMaybe

(FilePath, UTCTime, Bool)
fmap

FilePath

filter (== ”frag.glsl”)

FilePath

performEvent

ByteString

compile

Either ByteString Shader

fanEither

ByteString Shader

fanEither

ShaderByteString

performEvent

compile

Either ByteString Shader

ByteString

FilePath

filter (== ”vert.glsl”)

link

Either ByteString Program
fanEither

ByteString

Program

FSNotify.Event

I See watchShaderProgram in Shader.hs

Recompiling OpenGL Shaders: Shader Wiring Diagram
mapMaybe

(FilePath, UTCTime, Bool)
fmap

FilePath

filter (== ”frag.glsl”)

FilePath

performEvent

ByteString

compile

Either ByteString Shader

fanEither

ByteString Shader

fanEither

ShaderByteString

performEvent

compile

Either ByteString Shader

ByteString

FilePath

filter (== ”vert.glsl”)

link

Either ByteString Program
fanEither

ByteString

Program

FSNotify.Event

I See watchShaderProgram in Shader.hs

Recompiling OpenGL Shaders: Shader Wiring Diagram
mapMaybe

(FilePath, UTCTime, Bool)
fmap

FilePath

filter (== ”frag.glsl”)

FilePath

performEvent

ByteString

compile

Either ByteString Shader

fanEither

ByteString Shader

fanEither

ShaderByteString

performEvent

compile

Either ByteString Shader

ByteString

FilePath

filter (== ”vert.glsl”)

link

Either ByteString Program
fanEither

ByteString

Program

FSNotify.Event

I See watchShaderProgram in Shader.hs

Demo

I Demo Time!

Takeaways

I Learn by doing

I FRP first, web stuff later

I Start with reflex-basic-host

I Wiring diagrams!

Links

I Demo code:
https://github.com/qfpl/reflex-gl-demo

I reflex:
https://hackage.haskell.org/package/reflex

I reflex-basic-host:
https://github.com/qfpl/reflex-basic-host

I glow:
https://github.com/ekmett/codex/tree/master/glow

https://github.com/qfpl/reflex-gl-demo
https://hackage.haskell.org/package/reflex
https://github.com/qfpl/reflex-basic-host
https://github.com/ekmett/codex/tree/master/glow

