The Core of streaming

Jack Kelly

November 12th 2024

Why Stream?

@ Same reasons as for other languages:

o Interleave effectful work and the production of results
o Process lots of data in bounded space

How to Stream?

iteratee
io-streams
pipes
conduit
machines
streamly

streaming

Why | like streaming

(Reasonably) simple core type
Not too many type variables
No custom operators

Not too many warts

Let’s build its core type!

Attempt 1: Lists

data Stream a =
= Step a (Stream a)
| Done

@ Problem: When do effects happen?
e Non-solution: Lazy 1/0.
@ Solution: Make them explicit.

Aside: Problems with lazy I/O

What does this program print?

main :: IO ()
main = do
lineCount <- withFile "temp.txt" ReadMode $ \h ->
length . lines <$> hGetContents h
putStrLn $ show (lineCount :: Int) ++ " lines counted."

Aside: Problems with lazy I/O

What does this program print?

main :: IO ()
main = do
lineCount <- withFile "temp.txt" ReadMode $ \h ->
length . lines <$> hGetContents h
putStrLn $ show (lineCount :: Int) ++ " lines counted."

@ hGetContents: illegal operation (delayed read on closed handle)

Attempt 2: Adding Effects

@ Add type variable m and constructor Effect.
@ m is almost always a Monad.

@ Now we know when we need to do effectful work:

data Stream a m =
= Step a (Stream a m)
| Effect (m (Stream a m))
| Done

o Example: untilJust :: m (Maybe a) -> Stream a m
o Next Problem: There could be an unbounded amount of work behind each a.

o Solution: Make the stream strict in a.

Attempt 3: Adding Strictness

@ Force each “a” (to at least WHNF) before putting it in the Stream:

data Stream a m =
= Step !a (Stream a m)
| Effect (m (Stream a m))
| Done

o Next Problems:

o How to split a stream without needlessly buffering?
e How to return an error result?

@ Solution: Let Done carry a result.

Attempt 4: Adding Results

@ Add a result type r to the Done constructor:

data Stream a m r =
= Step !'a (Stream a m r)
| Effect (m (Stream a m r))
| Done r

e Example:
splitAt :: Int -> Stream a m r -> Stream a m (Stream a m r)

o Example: untilLeft :: m (Either r a) -> Stream a m r

One weird trick

@ Un-inline the item and rest-of-stream from Step
@ Stream (Of a) is isomorphic to the previous slide’'s Stream a
e Of is partially applied!

@ We have now reached the “real” type from streaming

data 0f a b = 'a :> b deriving Functor

data Stream f m r =
= Step !(f (Stream f m r))
| Effect (m (Stream f m r))
| Done r

What does this enable? Lots!

chunksQ0f ::
(Monad m, Functor f) =>
Int ->
Stream f m r ->
Stream (Stream f m) m r

@ A Step constructor now contains an inner stream, which returns the remainder of
the outer stream when it's done

What else does this enable?

copy
(Monad m) =>

Stream (Of a) m r ->
Stream (0f a) (Stream (0f a) m) r

@ An Effect constructor now wraps an inner stream, which yields a second copy of
every element.

But wait, there's morel!

@ Parsing an archive format:
e First, a Header including the name and length of all blobs
e Then, a concatenated sequence of compressed blobs

Header { records :: [Record]
data Record = Record { name :: Text, compressedLength :: Int }
decodeHeader

Stream (0f ByteString) m r ->

m (Either String (Header, Stream (0f BytesString) m r))

data Header

But wait, there's morel!

@ Parsing an archive format:
e First, a Header including the name and length of all blobs
e Then, a concatenated sequence of compressed blobs

data Header = Header { records :: [Record] }
data Record = Record { name :: Text, compressedLength :: Int }
decodeHeader

Stream (0f ByteString) m r ->

m (Either String (Header, Stream (0f BytesString) m r))

data Blob m r =

Blob { name :: Text, data_ :: Stream (0f ByteString) m r }
deriving Functor
decodeBlobs

MonadI0O m =>
Header -> Stream (0f ByteString) m r -> Stream (Blob m) m r

It's not perfect

@ ByteString is idiomatically handled by streaming-bytestring

e ByteStream m r is like Stream (0f ByteString) m r, unpacked and inlined for
efficiency

@ No early finalisation
o Difficult to say “I'm done now, close the Handle" without extra effort

@ Still possible to buffer more than planned, if you really try

The future of streaming

@ A port of streaming to linear-base

@ Enables some cool stuff:

data Header
data Record

data Blob
Blob {
name
data_

= Header { records :: [Record] 1%}

= Record { name :: Text, compressedLength
mr =

Text ,

Stream (0f ByteString) m r

} deriving Functor

decodeBlob

Handle
Record

Bl =

->

Blob m Handle

Int }

