
Tour of the Typelevel

Jack Kelly
http://jackkelly.name/talks

November 12, 2019

Tour of the Typelevel

Tonight:
I Several common type system extensions.
I Motivating examples.
I Dropping signposts.
I Less scary when you see them in libraries.
I Please keep arms and legs inside the vehicle at all times.

http://jackkelly.name/talks


Values, Types, and Kinds

Kinds

Types

Values
True

False
(Just 3)

Type

Bool
(Maybe Int)

isUpper

(Char -> Bool)
Maybe

(Type -> Type)

Values, Types, and Kinds

What did we learn?
I Types classify values.
I Kinds classify types.
I Types of kind Data.Kind.Type may have values.

I Also called *, but this will (eventually) go away.
I May, not must: Void has no values.

I Ask GHCi for the kind of a type:
> :kind Maybe
Maybe :: * -> *



Kind Signatures

I Values may have type signatures.
I Types may have kind signatures:

{-# LANGAUGE GADTSyntax , KindSignatures #-}

data Either (a :: Type) (b :: Type) :: Type
where

Left :: a -> Either a b
Right :: b -> Either a b

DataKinds

Kinds

Types

Values
True False

Type

Bool

Bool

’True ’False



DataKinds

I What does data Either a b = Left a | Right b do?
I It introduces:

I The type constructor Either :: Type -> Type -> Type
I Two data constructors:

I Left :: a -> Either a b
I Right :: b -> Either a b

I If we set {-# LANGUAGE DataKinds #-}, we also get:
I The kind Either a b
I Two type constructors:

I ’Left :: a -> Either a b
I ’Right :: b -> Either a b

I DataKinds also gives you type-level strings (kind Symbol) and
naturals (kind Nat).

DataKinds Example

Suppose:
I I have a data structure, stored on disk.
I It is really important that I verify it before use.

I e.g. Moxie’s Cryptographic Doom Principle
https://moxie.org/blog/
the-cryptographic-doom-principle/

I How do I enforce this?

https://moxie.org/blog/the-cryptographic-doom-principle/
https://moxie.org/blog/the-cryptographic-doom-principle/


DataKinds Example: Unsafe API

data Structure = -- ...

loadStructure :: FilePath -> IO Structure
loadStructure = -- ...

verify :: Structure -> Bool
verify = -- ...

DataKinds Example: Verified Reads

{-# LANGUAGE DataKinds #-}

data Verification = Unverified | Verified
data Structure (v :: Verification) = -- ...

loadStructure
:: FilePath
-> IO (Structure ’Unverified)

loadStructure = -- ...

verify
:: Structure v
-> Maybe (Structure ’Verified)

verify = -- ...



DataKinds Example: HList

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures # -}
{-# LANGUAGE TypeOperators #-}

data HList (xs :: [Type]) :: Type where
HNil :: HList ’[]
HCons :: x -> HList xs -> HList (x ’: xs)

> :t HCons True (HCons "Hello" HNil)
HCons True (HCons "Hello" HNil) :: HList ’[Bool, [Char]]

I HList is a GADT — Generalised ADT.
I This lets us set the type variables in the result of constructors.

ConstraintKinds

{-# LANGUAGE ConstraintKinds #-} lets us use the kind
Constraint in contexts:
I It gives us a new kind called Constraint:

> :k Show
Show :: * -> Constraint
> :k Monad
Monad :: (* -> *) -> Constraint

I Tuples of Constraint are also of kind Constraint:
> :k (Eq Int, Show Int)
(Eq Int, Show Int) :: Constraint



ConstraintKinds

I We can write constraint aliases using type:

type Stringy a = (Read a, Show a)
roundtrip :: Stringy a => a -> a
roundtrip = read . show

I Ed Kmett has a library constraints for playing with these,
and a talk “Type Classes vs. the World” (skip to 46:00).

Multi-Parameter Type Classes

I What is a type class?
I It’s a property on types:

I Int is in Num, Show, . . .
I It may have methods for ad-hoc polymorphism:

I Implementation chosen by the argument type

I Why restrict ourselves to one type?



Multi-Parameter Type Classes

I Set {-# LANGUAGE MultiParamTypeClasses #-}.
I Type classes are now N-ary relations on types:

class Resource idType resourceType where
url :: idType -> String
get :: idType -> IO resourceType

newtype PostId = -- ...
data Post = -- ...
instance Resource PostId Post where

-- ...

I What is the type of get (pid :: PostId)?
I We want IO Post.
I But type classes are an open world!
I How can GHC know there’s no other instances?

Functional Dependencies

I Set {-# LANGUAGE FunctionalDependencies #-}.
I We can now say which parameters force which other

parameters:

class Resource i r | i -> r, r -> i where
url :: i -> String
get :: i -> IO r

newtype PostId = -- ...
data Post = -- ...
instance PostId Post where

-- ...

I What is the type of get (pid :: PostId)?
I IO Post.

I What is the type of pid in get pid :: IO Post?
I PostId.



Type Families

I Type families are type-level functions.
I Think of them as type aliases that can inspect their argument.
I Set {-# LANGUAGE TypeFamilies #-}

Type Families: Closed Type Families

I The simplest:

type family
Append (xs :: [k]) (ys :: [k]) :: [k]
where

Append ’[] ys = ys
Append (x ’: xs) ys = x ’: (Append xs ys)

I :kind! will force GHCi to expand a type-level expression:
> :kind! Append ’[Int] ’[Bool]
Append ’[Int] ’[Bool] :: [*]
= ’[Int, Bool]



Type Families: Open Type Families

I Instead of providing all the equations, allow anyone to add
their own.

{-# LANGUAGE DataKinds # -}
{-# LANGUAGE PolyKinds # -}
{-# LANGUAGE TypeFamilies # -}

data Permission = P1 | P2
type family

Permissions (act :: k) :: [Permission]

-- In some other module ...
data Action = A1 | A2
type instance Permissions ’A1 = [’P1, ’P2]
type instance Permissions ’A2 = ’[]

Type Families: Associated Types

I Add type aliases to type classes.

class MonoFunctor m where
type Elem m :: Type
omap :: (Elem m -> Elem m) -> m -> m

instance MonoFunctor Text where
type Elem Text = Char
omap = -- ...

I Remark: This is a good motivating example for associated
types, but Traversals (from lens) are a better solution to
this problem.



Data Families

I Also turned on by {-# LANGUAGE TypeFamilies #-}.
I Write data instead of type: data family ... where etc.
I Let you create new data types based on type arguments.
I Used much less often.

Proxy

I Consider this function:

normalise :: String -> String
normalise = show . read

I What instances of Read and Show do we use?
I We can use a Proxy to explicitly choose an instance.

{-# LANGUAGE PolyKinds , KindSignatures #-}

data Proxy (a :: k) = Proxy



Proxy Example: String Normalisation

I Consider this version:

{-# LANGUAGE ScopedTypeVariables # -}

normalise
:: forall a . (Read a, Show a)
=> Proxy a
-> String
-> String

normalise _ s = show (read s :: a)

Proxy Example: Value of a Symbol at Runtime

{-# LANGUAGE DataKinds , TypeApplications #-}

import Data.Proxy
import GHC.TypeLits

hello :: String
hello = symbolVal (Proxy :: Proxy "hello")

hello ’ :: String
hello ’ = symbolVal (Proxy @"hello")



Summary

I DataKinds lifts data declarations into new types and kinds.
I ConstraintKinds lets you use types of kind Constraint

inside contexts.
I GADTs let you fiddle the type variables in data constructors.
I MultiParamTypeClasses turn type classes into relations on

types. Use FunctionalDependencies to help things along.
I ScopedTypeVariables lets you use type variables inside

function bodies.
I TypeFamilies lets you write type-level functions.
I The Proxy type lets you pass additional type information to

functions.


